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On the way to settle a conjecture proposed by Mackey, we first present in detail 
a complete solution to the correspondence problem for systems whose configura- 
tion space is R". We then indicate how this can be considered as a first step in 
the elaboration of a geometric dequantization program which would extend the 
results to more general manifolds. 

1. I N T R O D U C T I O N  

The observables  of  a classical mechanica l  sys tem (Arnold ,  1978; 
A b r a h a m  & Marsden ,  1978) on a smooth  man i fo ld  M (e.g., R")  are  usual ly 
ident i f ied  with the e lements  f ,  g . . . .  of an a lgebra  ~ of smooth  funct ions  
f rom the co tangen t  bund le  of M ,  T * M  (e.g., R 2'') to R. ~[ is equipped,  in 
add i t i on  to its usual  vector  space s t ructure  on R,  with two a lgebra ic  
s t ructures:  a Jo rdan  produc t ,  given by poin twise  mul t ip l ica t ion;  and  a Lie 
produc t ,  namely ,  the Poisson b racke t  { , }, e.g., 

k=l 

associa ted  to the symplec t ic  form r e.g., 

~= ~ dPk /Xdqk 
k = l  

canonica l ly  def ined on T . M .  
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In contrast, the observables of a quantum mechanical system (Dirac, 
1930; von Neumann, 1932; Mackey, 1963a) on M are usually identified with 
the elements f, ~ . . . .  of an irreducible algebra ~ of linear, self-adjoint 
operators acting in the Hilbert space ~ = L2c(M). Again, ~ is equipped, in 
addition to its usual vector space structure on R, with two algebraic 
structures: a Jordan product 

= + 

and a Lie product 

where f .~  denotes the usual composition of the operators f and ~. 
The correspondence problem can be stated as follows: To establish from 

first principles a correspondence between classical observables f, g ... .  in ff[, 
and quantum observables f, ~ . . . .  in ffl. At first sight, it could appear 
reasonable to expect that this correspondence (if it exists at all) would 
satisfy the following requirements: 

(i) af +bg,--,af +b~, Va, bER; 
(ii) {f l  f E  ffl} generates ~ ,  and in particular that this collection of 

operators be irreducible; 
(iii) ( L  g) "-' ( f ,  g) = [.L ~,]/i; 
(iv) i ~ i; 

to which one might wish to add some requirement to the effect that this 
correspondence respect at least some of the Jordan algebraic structure of ~f 
and ~,  e.g., 

(v) 

The impossibility of satisfying simultaneously all these requirements is 
the object of well-known "no-go theorems"; even forgetting about (v), and 
relaxing (ii) to the weaker condition that ~ = ( f l f ~ )  be of finite 
multiplicity would not help (Groenewold, 1946; van Hove, 1951; Chernoff, 
1969; 1981; Abraham & Marsden, 1978). These negative results are in good 
measure responsible for the continuing interest in the correspondence prob- 
lem. In particular, one has to find some fundamental reason to guide the 
choice of how one should relax the correspondence requirements listed 
above. 

Partial solutions have been proposed. Exploiting the symplectic struc- 
ture of T .  M, a very natural geometric construction, known as prequantiza- 
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tion, has been recognized to produce a map from ~ to a collection of linear 
operators on LZc(T. M) which satisfies conditions (i), (iii), and (iv). Even in 
the flat case ( M =  R"), however, the image of ~ under this map consists 
only of first-order differential operators, and this map can therefore not 
preserve squares; moreover its image is not irreducible (and is, in fact, of 
infinite multiplicity). Further elaborations, known under the generic name 
of geometric quantization, have for essential purpose to solve the correspon- 
dence problem by extracting, in as natural a way as seems possible, an 
irreducible quantum theory from the image of the prequantization map. The 
concept of polarization plays a central role in that enterprise, and its 
connection with the Tomita-Takesaki theory of modular algebras and the 
choice of a maximal Abelian subalgebra has recently been pointed out by 
the author (Emch, 1981, where the basic references to the main stream of 
this approach are also listed). The geometric quantization scheme, which 
reproduces the usual quantum mechanics when M = R", seems nevertheless 
to meet with some difficulties in the general case. Moreover, although it 
does give a geometrical meaning to Dirac's warning that certain observables 
are more fundamental than others, it does not involve explicitly enough the 
following two physical elements which should be expected to play some 
essential role in a complete solution of the problem. 

Firstly, we should notice that in the sketch of classical and quantum 
mechanics given in the beginning of this section no mention is made of the 
states of the systems considered. This oversight should be attended to, and it 
will be, since in the last analysis the states provide us with the expectation 
values, which are the primary measurable quantities attached to these 
theories. 

Secondly, in the above formulation of quantum mechanics a universal 
constant, the Planck quantum of action h, is hidden as it takes the value 
h = 1 when the appropriate units are chosen. Its role in the theory has aptly 
been compared to that played in (special) relativity by c, the velocity of 
light, which can also be chosen to take the value c = 1 by an appropriate 
choice of units. It is equally well known that the prerelativistic physics can 
be recovered from relativistic physics by letting c tend to infinity; in 
particular, the Lorentz group (for c < oo) contracts, in the limit c --, c~, to the 
Galilei group. Similarly, one does expect (see, e.g., Mackey, 1963a, pp. 
103-104) that the prequantum physics should be recoverable from quantum 
physics by taking, under mathematically controlled circumstances, the limit 
h ~ 0 .  

To incorporate these elements (i.e., the geometry, the statistical inter- 
pretation, and the classical limit) is the principal aim of the geometric 
dequantization program outlined in this paper where quantum theory is 
taken to be the fundamental theory from which classical mechanics--with 
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both its Poisson bracket and its Jordan structures--is derived. As a side 
result, the program establishes from first principles a fundamental justifica- 
tion for the Wigner-Moyal correspondence principle which had originally 
(Wigner, 1932; Moyal, 1949) been proposed on an admittedly ad hoc basis. 

2. PRE-PHASE-SPACE QUANTUM MECHANICS 

With the primary purpose of first presenting the program in as simple 
terms as possible, Sections 2-4 deal specifically with the case M = R", and 
we explain in Section 5 how one should proceed to lift this restriction. 

We take as our starting point the formulation (Mackey, 1963a) of 
quantum mechanics according to which the algebra of observables is 
obtained from the fundamentally geometric concept of an irreducible sys- 
tem of imprimitivity based on M ( = R" ). Namely, with h fixed, say in (0, 1], 
~[~ will be generated from two families of operators, acting together 
irreducibly on some Hilbert space g): the first family is a projection-valued 
measure 

Qh: AE 25(M)~Qh(A)  ~ ~3(~) 

and the second family is a continuous unitary representation 

satisfying 

Uh( a )Qh( A )Uh( a- '  ) = Qh(a[A]) (1) 

where ~3(M) is the algebra of Borel subsets of M; ~ ( 0 )  is the lattice of 
projectors on the Hilbert space 0;  G is a Lie group, acting transitively and 
freely on M, and taken here ( M =  R") to be the group of translations (a: 
x ~  Mw, x + aE M}; and finally, lI(,~) denotes the group of unitary opera- 
tors on ~. 

Together with the usual Cartesian coordinate system on R", the projec- 
tion-valued measure Qh defines a family {Q~k)lk = 1,2 . . . . .  n} of mutually 
commuting self-adjoint operators, acting on ~ ,  and identified as "position" 
observables. The "momenta"  (p~k)[ k = I, 2 . . . . .  n } canonically associated to 
these position observables are defined, via Stone's theorem, as the self- 
adjoint generators of Uh(G), namely, 

Uh(a) = e x p ( - i a . P h / h  ) Va~G (2) 
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Conversely Qh defines a continuous representation of/~", namely, 

Vh: f i g / ~ " . e x p ( -  ia.Qh/h) ~ u( .~)  (3) 

Upon defining for every z = (a, ~)~ R"•  the unitary operator 

eh( z ) ---- exp(-- ia . ~h /2  ) Uh( ha ) Vh( hd ) 

= exp [ - i(a. Ph + ~" Qh )] (4) 

one obtains an equivalent form of (1), namely, 

Eh( z ,)Eh( z2) = Xh(zt, z2)Eh( z , + z2) (5a) 

with 

and 

Xh(Z,, z2) = exp[io(zt, zz)h/2] 

O(ZI,Z2) = a l . a  2 - -~ l . a2  

(5b) 

(5c) 

The symplectic form o on the Kaelerian manifold R2"~R"•  t~"_~C" will 
play an essential role in the sequel. 

Without loss of generality (von Neumann, 1931) we can realize (5) on 
L2c(M), for instance (Hepp, 1974) by 

[ E h ( z ) ~ ] ( x ) = e x p [ - i h ' / 2 & . ( x - h l / 2 a / 2 ) ] ' ~ ( x - h ' / 2 a )  (6) 

We can then define (Segal, 1963; see also Lavine, 1965; and Grossmann, 
Loupias, & Stein, 1968) for every f in L l (R" • the function f of the c 
operators {p~k)= _ ihl/2Ok; Q~k)= hl/2xk]k = 1,2 ... . .  n} by 

f = f dz f ( z ) . eh ( z )  (7) 

Note that f is bounded as an operator on L 2c(R'), with II f I[ ~< II f II,; and 
that the adjoint of the operator f is represented by the function f*: 
zE R" • l ~ " , f ( -  z)*~ C. The product f .~  of the operators f and ~ induces 
on LIc(R"• I~") the twisted convolution product (Kastler, 1965): 

f * hg: R" • K" .  f dz f( z z )xn( z, ) (8) 
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with Xt,(z, ~') defined in (5). Consequently, the Lie bracket [f ,  ~,]/ih of the 
operators f and ~ naturally induces on LI(R"Xt~ ' ' c  ) the Lie bracket 

(f,g}h: (9a) 

with 

; )  = xh( ; .  z)]/ih (9b) 

(compare with Moyal, 1949). 
This correspondence allow us to use the algebra 

= (Lg(R" x ( . . .  },) (10) 

to describe completely the algebra of observables 

~h=(  { f l fEPth} ,  ",[., . l/ih ) (11) 

equipped with the Jordan and Lie structures it inherits from the operator 
product. Notice that, as a subset of ~3 (~) ,  ~ ~ is independent of h E (0, I]; is 
stable under Hermitian conjugation; is irreducible, and hence dense in 
N(�9 is stable under the action of G; and contains all the quantum 
information introduced so far. These algebraic properties are faithfully 
reflected in ~ h. The advantage of using 9/~ is that it emphasizes in both of 
its product structures the role of the parameter hE(0,1],  and hence the 
information that an identification of the basic observables of the theory has 
been made (namely, that Ph and Qh have been defined as we did) involving 
explicitly the physical constant h. Notice moreover that, although the 
quantum theory itself is only defined for h > 0, one has 

lim Xh( Z, ~ ) = 1 
h - - 0  

lira ~rh(z, ~') = o ( z ,  ~) 
h - - 0  

(12) 

thus indicating that as h "reaches" (in some sense which we shall make 
precise) the value h = 0, the algebra 9~ h becomes Abelian, while still "re- 
membering" its quantum Lie bracket through the symplectic form o. 

The last element needed to complete our description of quantum 
mechanics on R" is the notion of state. Among the several possible defini- 
tions, we choose one, and then show its relations with some others in 
Lemma 1 and in the examples following that general result. Specifically, a 
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continuous function cp: R"•  C is said to be of h-positive type if it 
satisfies for some h E (0, 1]: 

x ~ x j q 0 ( z j  - zk )xh( zj, z,  ) >! 0 
j , k = l  

VmeZ+,V(~k,  ..... )~ , , )cC,V(z ,  .. . . .  z , , )CR"XI~"  (13) 

cp is said to be a state on 9.[ h if it satisfies moreover the normalization 
condition qv(0) = 1. 

In the sequel, for every cpE L~(R" X/~") we use again the same symbol 
cp to denote the map from L t (R" • R") c to C defined by 

(w; f)= f dzq~(z)f(z) (14) 

Lernma 1. (a)For a continuous function cp: R " X / ~ " ~  C the fol- 
lowing conditions are equivalent: 

(i) ~p is of h-positive type; 
(ii) cp is bounded, and for every continuous function f: R" • 

R" ~ C of compact support (cp; f* * h f )  >~ 0. 
^ 

(b) For any r in L~(R"X  R"), the following conditions 
are equivalent: 

(i) cp: fEg~h~(qo;  f ) ~ C  is positive; 
(ii) cp is locally almost everywhere equal to a continuous 

function of h-positive type. 

Proof The condition that a continuous function be of h-positive type is 
the generalization (for h > 0) of the classical condition (obtained at h - - 0 )  
that a continuous function be of positive type. In the latter case the above 
lemma is a well-known result (see, e.g., Dixmier, 1969, Section XIII), and 
one could extend step by step the classical proofs to the present case. It is, 
however, interesting for our purpose in this paper to notice that this is more 
than a mere analogy: the present case can be made to be contained as a 
particular case of the classical theory for locally compact, not necessarily 
Abelian, groups. Since (5) is a projective representation of R"X/~" ,  we 
know (Bargmann, 1954) that it can be seen as a unitary representation of an 
extension "Z h of R "X/~"  by the multiplicative group s of the complex 
numbers of modulus 1. Let indeed -Z h denote the Cartesian product 

zh = s x R" x /~"  (15) 
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equipped with the composition law: 

(tO I, ZI)(r 2,-72) = (091602Xh(21, Z2), 21 q- Z2) (16) 

Clearly the continuous group homomorphisms 

i: toe ~ ( w , 0 ) ~ . E  h 

satisfy the exact sequence condition 

l ~ f ~  i - /~,,__, --,~a Z R "  X 0 (17) 

which exhibits explicitly the group extension structure of -h. For any 
q0: R n X/~" ~ C, continuous or in L~, we can now define 

(lS) 

and check immediately that ~a satisfies the various conditions of the lemma 
exactly when qo does, with, however, h-positivity on R" • 1~" now replaced 
by the classical positive-type condition on the non-Abelian, locally compact 
group "-h: 

j ,k=l 

VmeZ+,V{X, , . . . ,Xm} CC,  V(~, . . . . .  f,,,} C E  h (19) 

Hence the classical equivalences can be used directly. �9 
By way of examples for states in the sense chosen here, consider any 

density matrix p on tO = L2c(R"), i.e., any positive, trace class operator on 
with Tro = 1. Clearly 

q~h : z E  R" X t } "~  Tr pEh( z ) ~ C (20) 

is a continuous function of h-positive type, with ~%(0)= 1, and hence is a 
state on 9~. Moreover since p is of Hilbert-Schmidt class, ~Pa belongs to L 2 
(Segal, 1963), and conversely every L2-state is obtained from a density 
matrix. This gives thus a precise characterization of those states on ~h 
which extend to normal states on ~3(0). 
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3. CLASSICAL STATES 

In Section 2 above, our exposition of quantum theory was developed 
without any reference to a possible underlying classical theory. In the 
present section and the next, the classical theory will be made to emerge as a 
consequence of a limiting procedure exploiting systematically the notion of 
convergence of quantum expectation values as h ~ 0. 

Definition 1. A family (cPhlhE(0, 1]} of states is said to be a classical 
state if it is convergent in the o (L% L ~) topology as h ~ 0. 

Proposition 1. ( a )On  a family (~ph]h~(0,1]} of states the following 
conditions are equivalent: 

(i) ( % l h  E (0, 1]} is a classical state; 
(ii) {whl h E (0, 1]} converges uniformly on compacta as h ~ O. 

(b) When the conditions of part (a) are realized there 
exists a continuous function cp0: R" •  --, C with the following properties: 

(i) % ~ % uniformly on compacta as h --, O; 
(ii) ~p0(O) = 1; 

(iii) % is of positive type. 

Proof (aii) clearly implies (ai). Indeed, let ~0 be the continuous func- 
tion obtained as uniform limit on compacta from {whlh ~ (0, 1]}; and f be in 
L ~. Since the algebra ~ of continuous functions with compact support is 
dense in L j, there exists, for each e >  0, g E  ~ such that II f -  g Ill < e/3.  For 
that g we have from (aii) that there exists 8 > 0 such that 

vh [o,a] 

We have then 

[ (cPh; f ) - ( C P o ;  f ) l  ~< I (~Ph; f - -  g)[ + I(cPh --q~ g)[ + [ (ePo; g - - f ) [  

~(ll%lloo +ll%ll~o)'ll f - gll~ + e / 3 ~ e  

since [I % [[ ~ = 1 for all h > O, and thus [I qo0 ]1 o~ = 1. We have thus obtained 
(ai) from (aii). Conversely, let us now assume (ai). There exists then ~p0 E L ~176 
such that (Ph + ~Po in the o (L  ~176 L ~ ) topology. Let now e > O, and f E  R, with 
support K. With *h denoting the convolution product of ~[h, and * the 
ordinary convolution product of L 1, we have from (ai) that there exists 
61 > 0 such that 

I(%; f** f ) - ( epo; f** f ) l<~e /2  V h ~ [ 0 , 8 ~ ]  
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On the other hand 

1(9)~;i**~I~-(9)~;i**i~1= fd,9)~(z) f d ~ i ( ~ ) * i ( z + f ) [ X ~ ( Z , ~ ) - l ]  I 

<<-119)hll~.llfll~.~(g).~(g') 

sup I x ~ ( z , f ) - l l  
zEK' ,~EK 

where K' is some compact such that z + f E  K whenever ( r E  K, z E  K'}. 
From the explicit form of Xh [see equation (5)], one therefore sees that there 
exists 82 > 0 such that 

l(9)h;f**hf)--(9)h;f**f)l<---e/2 V h E  [0,82] 

We have thus with 8 = Min{6 I, 62)" 

[(9)h;f**~f)-(9)o;f**f)[~e V h E  [0,6] 

Since 9)h is of/i-positive type, it follows from the above inequality that 9)o is 
of positive type. By the classical result referred to in the proof of Lemma 1, 
9)0 is locally almost everywhere equal to a continuous function of positive 
type. For our purpose we can therefore assume w.l.g. 9)0 to be continuous of 
positive type. From l[ 9)h l[ = 1 Vh E (0, 1] follows II 9)0 [I = 1, and hence 9)0(0) 
= 1. To prove that 9)h--' 9)o uniformly on compacta now requires only a 
straightforward modification of the classical argument (e.g., Dixmier, 1969, 
Theorem 13.5.2). This modification runs indeed as follows. Let 9)0 be as 
above, and e > 0 .  As in the classical case, we start by noticing that 
9)o continuous, and 9)o(0)=1 imply the existence of a > 0  such that 
I1- 9)0(z)l ~<e for all z in the ball B(a) of radius a. With b denoting the 
volume of B(a), and O a the indicator function of B(a), consider the 
function fa=b-lOa in L l and remark that I l f~l l l=l .  We will use this 
function in the following majorization: 

4 

19)~(z)-9)o(Z)l~ E ~*~(z) 
k = l  

where 

~2)( z ) = 19)h( z ) - (  9)h * ~L )( z )l 

~ (  z ) = 1( 9)~ * ~L)( z ) - (  9)~ * L) (  z )l 

~ ) (  z ) = 1( 9)~ * L)(  z ) - (  9)o* L) (  z )l 

~ ) ( z )  = 1(9)o*L)(z) - 9)o(Z) I 
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For k = 1 and 4, we can use at fixed h the extension from cph on R" •  to 
~h on "h given in the proof of Lemma 1, and proceed similarly with fa, to 
conclude directly from the classical argument that there exists 8, > 0 such 
that 

eta')( z ) ~ 2e '/z l 
~4,(z) ~ 2~'/~ J 

VzEB(a) ,  Vh~E (0,8,] 

a~3)(z) involves only the ordinary convolution product in L ~ so that we can 
use the classical argument (Dixmier, 1969, Lemma 13.5.1) to conclude, since 
[Iq0hll = 1 =  I1%11, that the o(L ~, L I) convergence of cp h to q00 implies the 
existence of some 8 " >  0 such that 

a~a)(z) ~< e, Vz~B(a ) ,  VhE (0, Sff] 

Finally we have for all z in B(a) 

,~2~( z ) = b- '  f~(.)dr wh( z - ~')[x.(r z ) -  1] 

~< sup Ixh(~ ' , z ) - l [  
~, z E  B(a) 

We thus conclude from the explicit form of Xh in (5), that there exists some 
8," > 0 such that 

~ ) ( z ) ~ ,  Vz~B(a), Vh~(0,8~"] 

Upon collecting these results, we obtain that there exists some 8 a = 
Min(8", 8"', 8,"} such that 

Iq0h(z)- w0(z) I ~< 2~ +4e ' /2 ,VzE  S( a) ,Vh ~ (0, 8~] 

From this follows that cph converges uniformly on compacta to q90, thus 
completing the proof of the proposition. �9 

Remark. An alternate proof of this proposition could have been ob- 
tained in complete parallel with the classical one (Dixmier, 1969, Theorem 
13.5.2), by using the fact that the state cp h on 9/h generates via the GNS 
construction, a representation of the canonical commutation relations (CCR 
h). The proof was presented in the manner chosen here only to emphasize 
that this apparent generalization is not actually needed, and that the result 
can in fact be seen as a straightforward application (up to one additional e 
coming from a~ 2)) of a well-known argument. 
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Having obtained, through condition (aii) of the above proposition, an 
effective criterion to recognize classical states in a quantum theory with 
explicit dependence on h, we now give a few examples. 

(a) The ground state of the harmonic oscillator 

H h = (Pg + r (21) 

is described in the representation (6) by the vector ~Po given by 

~o(X ) = (~o/rr)'/4exp( -- ~ox 2/2) (22) 

and the corresponding state is the function 

= %) 

= e x p [ -  }~ (ooa 2 -Jr- oo-'a=)/4] (23) 

Clearly (r p0 ,hlh E (0, I]} converges, uniformly on compacta as h--, 0, to the 
function rp0(z ) = 1; hence it is a classical state in the sense of Definition 1. 
Remark that the Fourier transform of % is the 3 measure at the origin. 

(b) The Schrgdinger coherent states, of which example (a) above (with 
w = 1) is a particular case, are indexed by ~ = (/3, q )E/~"  • R" and given by 

e&.h: z=(a ,  gt)ER"• k" 

~ee(z)exp[--  h(a z + e2)/4] ~ C (24) 

where 

er = e x p [ -  i(/~a + q~)] 

These again are classical states in the sense of Definition 1, since {qo2. h [ h E 
(0, 1]} converges, uniformly on compacta as h --, 0, to the function 

q~: z~  R" X k"~es(z)  ~ C 

Remark again that the Fourier transform of cp 2 is a 3 measure, concentrated 
now at 2 = ( / ~ , q ) E / ~ " •  R". The physical interpretation of this result is 
based on the remark that we have (heuristically, but this can be made 
rigorous easily) 

(~Pz, h; Qh) = q; (cP~,h;Ph)=fi 

(cp2. h ; (Qh _ (cp~,h ; 2 _- Qh)I) )@pr h2/4 (25) 
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i.e., these states are centered at (p,  q) with minimal quantum uncertainty. 
This property is evidently well known (SchrOdinger, 1926), and it certainly 
played an important role in the formation of the physical intuition that, as 
h --, 0, quantum theory "approaches" a classical limit. The structure of these 
states actually deserves a closer examination, which leads to the formulation 
of the more general examples (c) and (d) below. 

We can indeed rewrite (24) in the form 

z ) = z ) )  

with 

ELh( z ) = ee( z )Eh( z ) (26) 

and notice (Hepp, 1974; Roepstorff, 1970) that E~. h is again an irreducible 
representation of the CCR(h), so that there exists (von Neumann, 1931) a 
unitary operator Ch(2 ) defined, uniquely up to a complex number of 
modulus 1, by the relation 

Ch(2)*Eh(z)Ch(2 ) : ee ( z )Eh(z ) ,  V z E  R">< 1~" (27) 

Consequently r h is a vector state in the representation (6), namely 

~ . h (  z ) = ( Eh( z )%,~,  %.h)  

with 

O.~.h = Ch(2)~ 0 (28) 

where d# 0 is given by (22) (with w = 1). It has also been noticed that the 
convergence of ~P~.h to cp~ = e~ is in fact a particular consequence (Hepp, 
1974) of the strong operator convergence, in the representation (6), of El, (z) 
to 1 as h --, 0, which gives, through (27), 

s-lim Ch( 2 )*Eh( z )Ch( 2 ) = e~( z ) . I (29) 
h ~ O  

This leads to a third class of examples. 
(c) The Perelomov coherent states. For any vector xI'E ,~, the collection 

{~t'.=, h = Ch(2)~g]2E 1~"• R"} form, by definition, an (overcomplete) set of 
coherent states in the sense of (Perelomov, 1972). We now note that in our 
description, the states 

,/,2,h(z) = (Eh(z)'t's,h,'t'.~ h ) (30) 
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although they do not necessarily have, for h > 0, the minimal quantum 
uncertainty compatible with the Heisenberg principle, are nevertheless 
concentrated more and more around z = ( / ~ , q )  as h ~ 0, since as a conse- 
quence of (29) we have again 

fimoq~e.h( z ) = ee( z ) (31) 

(d) More general coherent states can still be obtained. Indeed since 
Ch(2 ) and Eh(z ) are unitary, (29) holds with the ultrastrong topology 
substituted for the strong topology. Consequently, we have for every density 
matrix O on ~ and every ~ / ~ "  • R" 

lim ps.~(z) = es(z ) (32a) 
h ~ 0  

where 

O~,h( z ) = Tr ps.hEh( z ) 

and 

(32b) 

P~.h = Ch( g )PCh( s )* (32c) 

(e) Finally, another collection of examples of classical states is pro- 

from which one computes 

with 

Pt3,h( z ) = Tr p~,hEh( z ) 

= exp[-- h@h" (.a 2 + . - ' e 2 ) / 4 ]  

O h = coth(flt0 h / 2 )  

These give again classical states in the sense of Definition 1, since at fixed 
B,{oa, h(')lh~(0,1]) converges uniformly on compacta as h--, 0 to the 

(33) 

(34) 

P~,h = exp( - f lH h ) / T r  exp( - f lH h) 

vided by the canonical equilibrium states at natural temperature fl = 1 /kT .  
For instance, the canonical equilibrium states for the quantum harmonic.  
oscillator (21) are defined by the density matrices 
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function 

p#: zER"Xl~"w, exp[-fl-l(a2 +~o-2&2)/2]EC (35 / 

It should be noticed that the Fourier transform of this function is the 
measure 

with 

and 

d/~t~( fi, q) = Z - t  e x p [ -  fill(/~, q)] d~ dq (36a) 

Z= fd~ d q e x p [ -  flH(/~, q)] (36b) 

H(p, q) = (p2 + toZq2)/2 (36c) 

which is the canonical equilibrium measure at natural temperature fl for the 
classical harmonic oscillator. 

All these examples suggest that classical states define distributions on 
/~n• R", and that one should thus expect the classical observables to be 
naturally defined, from the quantum observables, as functions on that 
space. This remark will be justified, and pursued further, in the next section. 

4. CLASSICAL OBSERVABLES 

We saw in Proposition 1 that every classical state {%[hE(0 ,1]}  
defines a continuous function 

%:  R" X/~" -, C 

of positive type and normalized to %(0) = 1; this function in turn induces a 
linear map 

%: fE LIc(R" X/~") ~, <%; f>  ~ C 

satisfying 

(i) (%;  f * * f )  >/0 

(ii) (%;  f* )  = (%;  f ) *  
(iii) II % II = 1 

(37) 
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These properties were shown to follow directly from the definition 

(iv) <qoh; f>  --' <r f )  as h --, 0 (38) 

Notice also the fact, easily extracted from the proof of the proposition, that 

(v) (r f*hg)  --* ( % ;  f ' g )  as h ~ 0 (39) 

Hence our Definition 1 equips L I ( R" X I{" c ) with the following structure, 
which now becomes interpretable in quantum theory as well: it is an 
involutive Banach algebra under the usual convolution product, on which 
states are operationally defined and turn out to be positive linear forms 
normalized to 1. One could simply thus identify the classical observables as 
the elements of this algebra, in line with the usual view that an observable is 
empirically defined (see, e.g., Emch, 1972) by the values it takes on the 
possible states of the system under consideration. This, however, would not 
be yet the usual phase space formulation of classical mechanics. To derive 
the latter from the quantum premises adhered to so far in this paper, we 
need the following mathematical facts. Let | be the set of all continuous 
functions from R " •  to C, which are of positive type; | be the set 
{cp E | [~p(0) ~< 1 ); ~ be the set of all r in | which are pure, i.e., for which 
qv = cpl + cp2 with r and cp2 in | implies that ~Pu and r are proportional to 
cp; and let finally ~ ~ be the set {q~ E ~ lop(0) = 1 }. We call the elements of ~3 
the classical pure states. In the flat case considered here, they. are parame- 
trized by 2 = (P, q) running ove r / { "X  R", the dual of R " X  R" considered 
as an Abelian group. The general Bochner theorem (see, e.g., Dixmier, 1969) 
asserts that to every cp in | with cp(0) = 1 corresponds a positive measure, of 
norm 1, on | say/%, concentrated on ~3~ and such that 

q~(z) : f,~"x R "dlz~(2)e~(z)' Vz ~ R" X/~" 

with 

es(z ) = e x p [ -  i( b . a  + q. a)] (40) 

Hence the Fourier transform of % has a natural meaning as the unique 
[since LJc(R"X 1{") is Abelian] decomposition of the state % into its 
pure-state components. We have thus 

< po; f> = f 
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with 
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f: ~e k"x R"~ f dzes(z)f(z) (41) 

which expresses the classical observables as functions f on the "phase 
space" ~ of the classical pure states. A phenomenological justification of 
the Wigner-Moyal correspondence is thus obtained from first principles, 
and its full meaning is given by the following result. 

Proposition 2. To every quantum observable 

i= f.,,• R,,dz f(  z )exp[-  i( a. P h + a.Qh)] 

corresponds a classical observable, i.e., a function 

): s  l~" X R" 

~ " x  R" dz f ( z ) e x p [ - i ( a . p  + g~.q)] 

such that 
(i) For every classical state {%lh ~ (0, 1]} 

lim (gh; f )  = J,~[, x g "dt%(2)f(2) 
h ~ O  

where t% is the Bochner measure corresponding to the continuous function 
9o of positive type determined by {ghl h E (0, 1]}; 

( i i )  lira (%;  l'<~) = fk" • n .dl%(~')(f'g)(e) 
h--O 

where f-g: 2E/~" • R"~f(2)g(2.) for a l l f  and g in ~(R" • 

(iii) 1% (~,~; [i, ~]/ih)-- s • {i, g)(~) 
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where {f, g): z?E R"•  R"~ 

k = l  

for all f and g in ~(R"  • t~"). 

Proof. (i) follows directly from Definition 1 and Bochner's theorem, as 
explained in the motivating remarks preceding the statement of the proposi- 
tion. To obtain (ii) we notice that, by definition of the twisted convolution 
product: (cph; f .~ )  = (~h; f*hg); now a slight adaptation of the argument 
presented in the proof that % is of positive type (see Proposition 1) shows 
that (cph;f*hg) tends, as h ~ 0 ,  to (r s i n c e f . ~ , = ( f * g ) -  this 
proves (ii). To prove (iii) we again use an argument akin to the proof of the 
positive type property of %; specifically, for f and g continuous of compact 
support, we have by (9) 

( f ,  g )h(z )  = f d~f(~)g(z - ~')~rn(~', z) 

which we now compare [see (12)] with 

( f ,  g)o(Z) : f dg f (~)g(z  - g )o (L  z) 

The proof now parallels that of Proposition 1, 
placed by 

{ sin[o(~', z l h / 2 ]  
[Trh(~ ' z ) -~  = o ( ~ , z ) h / 2  

this leads to 

lim (cph; ( f , g}h )  = (~0; ( f ,g}0)  
h--O 

with [Xh(~', z ) -  1] re- 

and the proof is completed by noticing that (f ,  g}o = {f, g}. 

5. CONCLUSIONS 

The main result of this paper is the derivation of the phase space 
formalism of classical mechanics (Propositions 1 and 2) from the operator 
formalism of quantum mechanics (see Section 2) by a systematic exploita- 
tion of one single feature of the theory, namely the convergence of expecta- 
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tion values as h ~ 0 (Definition 1 in Section 3). Specifically, the results are 
(i) the natural introduction, in the quantum theory, of the phase space of 
classical mechanics as the space of classical pure states; (ii) the description 
of classical states as probability measures on phase space; (iii) the proof that 
the Jordan and Lie algebra structures of quantum mechanics (linearity, 
symmetric operator product, and quantum commutator) carry over to 
define unambiguously the Jordan and Lie algebra structures of classical 
mechanics (linearity, point-wise multiplication of functions on phase space, 
and Poisson bracket); (iv) the justification from first principles of the 
solution of the correspondence problem provided by the Wigner-Moyal 
correspondence rule. 

As a commentary on the mathematical structures involved in the 
correspondence problem, one might want to remark that the classical limit 
appears in a very precise sense as a contraction of .-algebras. As in the case 
of the Lie group contraction governing the passage from relativistic to 
nonrelativistic physics, the limiting algebraic objects (at c = oo, h = 0) are 
quite different from the original ones (at c<oo,  h > 0 ) ;  the algebras 
(~lh[hE(0, 1]} are all made up of the same elements (operators in .0), and 
their composition laws are similar in that for all of them the Jordan and the 
Lie algebra structures appear respectively as symmetrizations and antisym- 
metrizations of the same operator product. By contrast, as one reaches the 
classical theory (at h = 0) the Lie structure (Poisson bracket) of ~ 0 involves 
partial derivatives which are totally absent from its Jordan structure (point- 
wise product). The mathematical origin of this phenomenon appears clearly 
from the relation between the (twisted) convolution products in ~[h and 9A 0 
(see in particular the proof of Proposition 2): it can be traced back to the 
fact that relation (12), when coupled to the restriction that f and g belong to 
R ( R " •  gives a particularly simple, and explicit, meaning to the 
statement that the Moyal bracket tends to the Poisson bracket as h ~ 0. 

Mathematically, the restriction placed in Proposition 2 (ii) and (iii), 
namely that the functions f and g belong to R rather than merely to L ~, is a 
cheap way to ensure that their Fourier transforms be infinitely differentia- 
ble so that, in particular, the Poisson bracket may be iterated at will. To 
increase even further one's control over f ( a n d  g), one might be prepared to 
restrict f to be also C~ f extends then, as a Fourier-Laplace transform, 
to an entire analytic function. The function f obtained in this way satisfies 
then very stringent growth conditions which do not even allow for simple 
polynomials, or even for functions of/~ (or q) alone. Extending the space to 
which fbelongs, so as to keep it entire analytic, but to allow for more liberal 
growth conditions at infinity, e.g., 

I f (2 )  I ~< C(1 + [z?l )Uexp(A-[ Im 2[) 
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(see Hormander, 1969) would involve allowing f to be a distribution of 
compact support. At the same time f would in general become unbounded, 
and one would therefore have to restrict the choice of admissible quantum 
states. A detailed analysis of this type of question is possible (cf. e.g., 
Grossmann, Loupias, and Stein, 1968), but it would lead us too far away 
from the elementary level at which we wanted to present the evidence that 
classical mechanics can, in its fundamental aspects, be completely derived 
from quantum mechanics. 

For certain unbounded operators H h, i.e., those which lead to well- 
behaved canonical equilibrium states, namely, such that Trexp( - f lHh)  is 
finite for all h and fl, and such that the corresponding (r h ~ (0, I]} satisfy 
the condition of Definition 1 (see also Proposition 1), the properties of the 
corresponding classical observable might be accessible by the method used 
in discussing example (e) in Section 3. This actually brings us back very 
close to the original motivation for the Wigner-Moyal rule (Wigner, 1932). 
Also in this connection, one might notice that the results of Proposition 2 
justify the use of the original quantum KMS condition to derive its classical 
analog, for instance in its static version (Gallavotti & Verboven, 1975; 
Aizenmann, Gallavotti, Goldstein, & Lebowitz, 1976): 

{] ,  g})  = B< 0; 

We should finally comment on the fundamental role geometry played 
in the formulation discussed in this paper, and on the insight it provides 
into the general correspondence problem. We started with the action 

( a , x ) E | 2 1 5  a [ x ] e M  

of a locally compact Lie group | on a manifold M, and assumed that | 
acts transitively on M, so that M is a homogeneous manifold, and inherits 
canonically the measure dx from the Haar measure on | We then based 
our quantum mechanical description on the irreducible system of imprimi- 
tivity resulting from the action of | on M; it is indeed well known (Mackey, 
1963a) that this concept can be formulated in the full generality of the 
structure just outlined. Then, to avoid redundancies, we used the fact that 
there exists in | a subgroup G which acts transitively and freely on M. This 
feature is encountered again in significantly more general circumstances, 
including nonflat manifolds. For instance, if M were chosen to be the 
Poincar6 half-plane 

M :  (w= x + iylxE R, y~  R + ) 
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endowed with the metric g( dx, dy ) = ( d x  2 '~ dy2 )/y2; and 63 were 

SL(2'R)={(  ac db) [a 'b 'c 'dER'ad-bc=l}  

with the action of 63 on M given by 

(a b):wEM~, aw+b 
c d ,.,. , , , E M  

Upon taking w o = i for origin, we introduce its stabilizer 

K={aE63,a[i]=i}={( coscp sin c0 ) } 
-sinqo coscp [qoE[0,2~') 

M is then recovered as the homogeneous manifold 63/K. G can then be 
taken to be 

G =  e-' {(0 
We further remark that G contains two closed subgroups 

{ } {(e-,0) } 1 S)[sER ; A= It~R N= (0 1 0 e' 

such that every a E G can be written uniquely as a = u.a with u E N and 
a E  A. In fact N, A, and K are characterized uniquely (up to conjugacy) in | 
by properties (i)-(v) below (Iwasawa decomposition): (i) N, A, and K are 
closed subgroups of | (ii) N is nilpotent; (iii) A is a real vector group 
which normalizes N; (iv) K is compact, and maximally so in | (v) every g 
in 63 can be written uniquely as g=u.a.k with uEN, aEA, and kEK. 
However, 63 differs from the Euclidean group in three aspects: (vi) 63 is not 
a semidirect product of G by K (as opposed to E" which is a semidirect 
product of the translation group R" by the rotation group O"); (vii) G is not 
Abelian: all that is left from the Abelianness of the translation group is 
property (iii) above; (viii) whereas N, A, and K are unimodular [for 
63 = SL(2, R)], G is not. We also note that the same structural properties 
obtain for 63 = SL(2, C) with now M diffeomorphic and isometric to the 
three-dimensional (instead of two-dimensional) mass hyperboloid in 
Minkowski 3+1 (instead of 2+  l) space. Here again (Mackey, 1968, pp. 
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126-127; Mackey, 1975) the essential features, except for flatness, of the 
usual Euclidean case are maintained; namely: | is a semisimple Lie group 
with finite center, and no compact component; K is a maximally compact 
subgroup of | unique up to conjugacy; and M = |  on which G acts 
transitively and freely, is a homogeneous Riemann manifold [for the con- 
ceptual framework behind these properties, see, e.g., Godement (1952), 
Mackey (1963b), and the Appendix in Mackey (1976)]. These structures are 
thus the first natural candidates to which the considerations of the main 
body of this paper should be extended. 

We thus briefly comment on the geometrical and physical meaning of h 
in this scheme. In the flat case, h ~  R + appeared in formulas (16) and (17) 
as a parametrization of all extensions of R" • R" by f~, which are invariant 
under the natural action of 0" on R"X/~".  More generally, this can be 
understood as follows. For every x0E M, the map 

ixo: aE G~'a[ xo] ~ M 

is surjective (since G acts transitively on M) and injective (since G acts 
freely on M); it thus establishes a vector space isomorphism between the 
tangent space (TM)x ~ of M at x 0 and the Lie algebra ~ of G. Tracing now 
where h entered the theory, namely, back in formula (2), we see that a 
choice of h > 0 corresponds exactly to a choice of a unit of speed for the 
geodesics of M issued from x0: it thus fixes a scale in ~ ,  and can therefore 
be interpreted as a choice of a multiplicative factor in the Riemann metric 
of M [or equivalently, as a choice of a mass unit (Mackey, 1963a) in the 
kinetic energy, i.e., in the Hamiltonian of the geodesic flow on M]. With M, 
G, and h generalized as just indicated, one can define the imprimitivity 
system (1), the irreducible operator-algebra ~h on L2(M, dx), and the 
function-algebra 9~ h. This can even be done in a coordinate-free manner, 
although specific coordinates will ultimately enter in the identification of 
the momentum operator p~k)(k = 1,2 . . . . .  n) conjugate to the position opera- 
tor Q~k). One should moreover be aware that two slight complications will 
occur when M is allowed not to be flat, as illustrated above by the example 
of the Poincar6 half-plane. First, it will not be possible in general to choose 
n one-parameter subgroups of G in such a manner that the image, through 
ix,, of each one of them be a geodesic in M; since, however, the limit h --, 0 
does concentrate on the Lie algebra ~ of G, this will be of little conse- 
quence. Second, G will in general not be Abelian, so that the P~k)'s (in 
contrast to the Q~k),s) will not necessarily commute among themselves; this 
will evidently show in the nonvanishing of the Poisson brackets between the 
generators of G, the latter appearing now in the classical theory as functions 
defined on the cotangent bundle T* M of M. 
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Modu lo  these mathemat ica l  and epis temological  precaut ions ,  the the- 
ory will thus proceed a long the pa th  descr ibed in the main  body  of this 
paper ,  p rovided  that  M is a s imply connected  homogeneous  R iemann  
manifold ,  on which a Lie group G acts t ransi t ively and freely. Fur the r  
adap ta t ions ,  to which we in tend to come back more  specif ical ly in a sequel 
to the present  paper ,  become necessary when M is al lowed, for instance,  to 
be a mul t ip ly  connec ted  mani fo ld  of strictly negative curvature,  compac t  
and  wi thout  boundar ies ,  such as those which suppor t  classical Anosov  
flows, e.g., where M = F \ |  with F a discrete cocompac t  subgroup  of |  

In view of the status of the no-go theorems a l luded to in Section 1, and 
a l ready  in force in R", it was thought  p roper  to first present  the dequant iza-  
t ion p rogram in the form of a detai led,  e lementary,  but  comple te  solut ion to 
the cor respondence  p rob lem in R". In doing  so, we set t led aff i rmat ively  a 
conjecture  p roposed  in Mackey  (1963a, pp.  103-104),  namely,  that  it is 
possible to start with a theory which makes  no assumptions beyond the 
fundamental  principles of  quantum mechanics, and to derive rigorously from 
these premises the complete structure of  the corresponding classical mechanics. 
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